Deep Learning 101, The top private AI Meetup in Taiwan, launched on 2016/11/11 @ 83F, Taipei 101
Deep Learning 101, 台灣曾經最高最早發起的深度學習社群 @ 83F, 台北101
AI是條寂寞且惶恐的道路,花俏的收費課程或活動絕不會是條捷徑
本頁內容為過往實名分享制的讀書會,感謝來自不同公司參與者的支持;如欲移除資訊還請告知。
Deep Learning 101 只由 TonTon Huang Ph.D. 及其當時任職公司無償贊助場地及茶水點心,無 Co-organizer
YouTube | 台灣人工智慧社團 FB | TonTon Huang Ph.D. | 台灣人工智慧社團 網站 | Hugging Face
手把手帶你一起踩 AI 坑
手把手帶你一起踩 AI 坑:https://www.twman.org/AI
- 避開 AI Agent 開發陷阱:常見問題、挑戰與解決方案:探討多種 AI 代理人工具的應用經驗與挑戰,分享實用經驗與工具推薦。
- 白話文手把手帶你科普 GenAI:淺顯介紹生成式人工智慧核心概念,強調硬體資源和數據的重要性。
- 大型語言模型直接就打完收工?:回顧 LLM 領域探索歷程,討論硬體升級對 AI 開發的重要性。
- 檢索增強生成(RAG)不是萬靈丹之優化挑戰技巧:探討 RAG 技術應用與挑戰,提供實用經驗分享和工具建議。
- 大型語言模型 (LLM) 入門完整指南:原理、應用與未來:探討多種 LLM 工具的應用與挑戰,強調硬體資源的重要性。
- 什麼是大語言模型,它是什麼?想要嗎?(Large Language Model,LLM):探討 LLM 的發展與應用,強調硬體資源在開發中的關鍵作用。
- Diffusion Model 完全解析:從原理、應用到實作 (AI 圖像生成);深入探討影像生成與分割技術的應用,強調硬體資源的重要性。
- ASR/TTS 開發避坑指南:語音辨識與合成的常見挑戰與對策:探討 ASR 和 TTS 技術應用中的問題,強調數據質量的重要性。
- 那些 NLP 踩的坑:分享 NLP 領域的實踐經驗,強調數據質量對模型效果的影響。
- 那些語音處理踩的坑:分享語音處理領域的實務經驗,強調資料品質對模型效果的影響。
- 手把手學深度學習安裝環境:詳細介紹在 Ubuntu 上安裝深度學習環境的步驟,分享實際操作經驗。
大語言模型 | 語音處理 | 自然語言處理 | 電腦視覺 |
Large Language Model | Speech Processing | Natural Language Processing, NLP | Computer Vision |
Deep Learning 101 Meetup
Deep Learning 101 Meetup 歷年活動 (摘要及逐字稿皆由 Gemini 2.5 Pro Preview 05-06 及 NotebookLM 所生成,處理好會陸續補上)
No. | 主題 (網頁) | 日期 (YT) | 講者 (摘要) | 語音 | 心智圖 |
---|---|---|---|---|---|
49 | On the Relationship among Convolution Attention and GNN | 2022/05/06 | 杜岳華 | - | |
48 | Model-Based Reinforcement Learning | 2021/07/16 | 翁崇恒 | - | - |
47 | 深度學習也可以學傅立葉轉換 | 2020/12/04 | 杜岳華 | - | - |
45 | Modeling the Dynamics of SGD by Stochastic Differential Equation | 2020/09/11 | Mark Chang | - | - |
44 | 神經網路的黑執事 | 2020/08/21 | Mark Liou | - | - |
43 | 幾何深度學習是在幾何什麼的? | 2020/07/24 | 杜岳華 | - | - |
42 | information in the weights | 2020/06/19 | Mark Chang | - | - |
41 | NLP Landing & Machine Reading Comprehension | 2020/05/29 | Ian & Hsiang | - | - |
40 | Instance Segmentation | 2020/05/01 | 顏志翰 (Bean) | - | - |
39 | 高維資料的降維演算法及視覺化 | 2020/03/20 | 杜岳華 | - | - |
38 | PAC Bayesian for Deep Learning | 2020/02/14 | Mark Chang | - | - |
37 | Introduction to geometric deep learning with implementation | 2020/01/10 | 杜岳華 | - | - |
36 | Explainable Artificial Intelligence | 2019/12/13 | 何宗諭 (Jiero) | - | - |
34 | High-Dimensional Continuous Control Using Generalized Advantage Estimation | 2019/10/04 | Cecile Liu | - | - |
33 | Hardware Accelerators for Machine Learning | 2019/08/23 | 林家銘 | - | - |
32 | Transfer Learnings & Multitask Learning | 2019/07/19 | Mark Chang | - | - |
31 | Machine Teaching | 2019/06/28 | Mark Liou | - | - |
30 | The Hackathon/Formosa Grand Challenge Between Us | 2019/05/17 | Ryan Chao | - | - |
29 | Domain adaptation | 2019/03/08 | Mark Chang | - | - |
28 | Deep knowledge representation and reasoning | 2019/02/15 | Chin-Hui Chen | - | - |
27 | Semi-Supervised Classification with Graph Convolutional Networks | 2019/01/11 | Bean Yen | - | - |
26 | Machine Reading Comprehension | 2018/12/07 | Nat, Alice & Ian | - | - |
24 | SOC: Social-network Opinion and Comment | 2018/10/12 | Nat Lee, TonTon | - | - |
23 | Recommender System | 2018/09/14 | SAS | - | - |
22 | Deep Bilateral Learning for Real-Time Image Enhancement | 2018/08/17 | 黃俊仁 (Ken Huang) | - | - |
21 | Dynamic Routing Between Capsules | 2018/07/06 | Jiero Ho | - | - |
20 | VAE: A generative model for 2D anime character faces | 2018/06/08 | Nat, Boris, Alice, Ian | - | - |
19 | Towards Principled Methods for Training Generative Adversarial Networks | 2018/05/11 | Mark Chang | - | - |
18 | Deep Generative Models @ Deep Learning Book Chapter 20 | 2018/04/13 | - | - | - |
17 | Approximate Inference @ Deep Learning Book Chapter 19 | 2018/03/16 | - | - | - |
15 | Confronting the Partition Function @ Deep Learning Book Chapter 18 | 2018/01/12 | 何宗諭 (Jiero) | - | - |
14 | Monte Carlo Methods @ Deep Learning Book Chapter 17 | 2017/12/15 | Ian Wang | - | - |
12 | Structured Probabilistic Models @ Deep Learning Book Chapter 16 | 2017/10/27 | - | - | - |
11 | Autoencoders @ Deep Learning Book Chapter 14 | 2017/09/08 | Nat Lee | - | - |
10 | Linear Factor Models @ Deep Learning Book Chapter 13 | 2017/08/11 | - | - | - |
09 | Representation Learning @ Deep Learning Book Chapter 15 | 2017/07/07 | - | - | - |
– | Applications @ Deep Learning Book Chapter 12 | - | - | - | - |
– | Practical Methodology @ Deep Learning Book Chapter 11 | - | - | - | - |
07 | Recurrent and Recursive Nets @ Deep Learning Book Chapter 10 | 2017/05/05 | - | - | - |
06 | Convolutional Networks @ Deep Learning Book Chapter 9 | 2017/04/14 | - | - | - |
05 | Optimization for Training Deep Models @ Deep Learning Book Chapter 8 | 2017/03/10 | 文字摘要 | - | |
04 | Regularization for Deep Learning @ Deep Learning Book Chapter 7 | - | - | - | - |
03 | Deep Feedforward Networks @ Deep Learning Book Chapter 6 | - | - | - | - |